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Summary of my paper entitled 
“My Challenge on the Development of a Mixed Variational Formulation in Solid Mechanics” 

By Tadahiko Kawai  
Professor, Emeritus, University of Tokyo 

1. Historical survey of the mixed variational formulation 
In 1950 Eric Reissner published a paper on a new variational formulation of the boundary value 
problems of solid mechanics which opened the door to the mixed method of solution on 

displacements 
i
u  and stresses ij

! . 

In March 1955 H. C. Hu and K. Washizu succeeded in development of the most general mixed 
variational principle using Lagrange multiplier from the minimum principle of potential energy. 
Washizu discussed that all existing variational principles are mutually connected and transformed 
each other by Friedrichs transformation from the principle of virtual work to the principle of 
complemental virtual work vice versa, via Reissner’s principle. 
Their works gave great impact to further development of the finite element method up to the 
present.  

2. Motivation of my research 
To develop his own principle, E. Reissner employed Lagrange multiplier method to introduce the 
displacement boundary condition to the principle of minimum potential energy.  
Consequently, convergency of approximate solutions to the true solution can not be guaranteed. 
Therefore development of a new mixed variational principle without using Lagrange multiplier has 
become motivation of my research on the finite element method since 1956 when Jon Turner’s 
Boeing research group published a paper on the direct stiffness method of solution and decline of 
the Force Method started. 

3. Outline of my variational formulation 
Firstly I paid attention on the well-known energy conservation law in mechanics as given by 

! ! ! !++=
v v S S

iiiiiiijij
u

dStudSutdVupdV
"

#"    ……......................................(3.1) 

where )(
2

1
,, ijjiij

uu +=!  and jiij
!! =  are assumed, and they are in equilibrium with the 

body force p
i
in V , surface traction 

i
t  on 

!
S  and enforced displacement 

i
u  on 

u
S , and 

0
,

=+
iiij
p!  in V, 

ii
tt =  on 

!
S , jiji

nt !=   ...................................... (3.2) 

j
n  is an unit normal drawn outward on the stress prescribed boundary 

!
S  and 

ii
uu =  on the 

displacement prescribed boundary 
u
S  where 

u
SSS +=

!
 

Eq.(3.1) is valid under isothermal or adiabatic temperature conditions. 
Hereafter standard notations in mechanics will be introduced without detailed explanation. 
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Eq.(3.1) states “when a solid is deformed and in equilibrium with external body force 
i
p  and 

surface traction 
i
t  on 

!
S  plus enforced displacement 

i
u  on 

u
S , the strain energy is equal to 

work done due to these external forces and displacement.” 

In practice, we must be satisfied with the approximate solution for the state vector ),(
iji

u !  of a 

given solid.  

Therefore taking variations with respect to 
i
u .and ij

! , the following equation can be derived. 

! " ij#ijdV $ pi!uidV $ ti
S"
% !uidS $ ui! tidS = 0

Su
%v%v%   ...................................... (3.3) 

(w.r.t. u
i
&!

ij
)  

It must be necessary to introduce the stress-strain law  
of a solid under consideration to use eq.(3.3) 
as shown in Fig.1. 
Strain energy A(!) : 

A(!) = "d!
c
#   …………………(a) 

where c is the loading path in ! " #  space. 

Complementary strain energy B(! )  

B(! ) = "d!
c
#   …………………(b) 

A(!)+ B(" ) = "!   …………………(c) 

Suppose that the stress-strain relation is given by  

)( klij f !" =   3,2,1,,, =lkji  ........................ (3.4) 

as in the theory of total deformation or flow theory of plasticity. 

If 0=
ij

!  corresponds to 0=
kl

!  and Jacobian 0),(),( 22112211 !"""#"""# $$%%  for the entire 

domain defined including )0,0( == klij !" , then the inverse function of eq.(3.4) can be defined 

uniquely as follows; 

)( klij g !" =  )3,2,1,,,( =lkki       ...................................... (3.5) 

Furthermore existence of the following strain energy function )( ijA !  and its positive–definiteness 

are assumed by  

ijijij ddA !"! =)(       ...................................... (3.6) 

Fig. 1 Stress-strain law and definition of the strain 

energy A(!)  and complementary strain energy 
B(! ) , c is loading path on ! " #  diagram 
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$$
#         ...................................... (3.7) 

Then the complementary energy function )( ijB !  and its positive definiteness are also assured by  

 ijijij ddB !"! =)(          ...................................... (3.8) 

 !
2
B =

"
2
B

"# ij"# kl

!# ij!# kl $ 0        ...................................... (3.9) 

Therefore if these conditions (3.4)-(3.9) are assumed, eq.(3.3) can be expressed by 

( !A("ij )dV # pi!uidV # Fi!uidS)+ ( !B($ ij )dV
v% # ui!tidS) = 0

v%S$
%v%v%      ........... (3.10) 

(w.r.t. u
i
)  

The first and second parentheses of L. H. S. of eq.(3.10) equal to zero represent coexistence of  
principles of the virtual work (w.r.t. u

i
)  and the complementary virtual work (w.r.t. !

ij
)  

respectively.  
Therefore it can be concluded that eq.(3.3) is a new mixed variational principle which unifies 
principles of virtual work and complementary virtual work. 
Especially in case of the linear elasticity, the stress-strain law is given by 

 
! ij = aijkl"kl

or "ij = bijkl! ij

#
$
%

&%
      ......................................  (3.11) 

Then, two equations for principles of virtual work and complementary virtual work become 
independent each other because  

0
2

1
)()( !== ijijijij BA "##"      ......................................  (3.12) 

the former gives the upper bound solution while the latter gives the lower bound solution of the 
strain energy. 
Thus it can be concluded that monotonously convergent approximate solutions can be always 

obtained using this mixed energy principle given by eq.(3.3) if the existence of )( ijA !  or 

)( ijB ! and their positive-definiteness are assured(See Fig.2). 

4. Comparison on the approximate solutions obtained by Reissner’s principle and the present energy 
formulation 
Alternative form of eq.(3.3) can be given by; 
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  (ti ! ti )"uidS + (ui ! ui )"tidS ! (# ij , j + pi )"uidV ! ui"# ij , jdS = 0
v$v$Su

$S#
$       ………(4.1) 

The last term of the L.H.S of eq.(4.1) is considered first. 
The equilibrium equation of a solid is given by; 

  0
,

=+ ijij f!   in V          …………………………………(4..2) 

  where if  is some distributed body force. 
Typical body forces are the gravitational force, thermal load due to temperature distribution, and so 
on. Therefore in case of the pure mechanics problem, the last energy integral of eq.(4.1) can be 
deleted. The similar equation of eq.(4.1) can be derived in case of Reissner’s principle as follows; 

  ! ! ! =+""""
# #

$#$$
s s v

iijijiiiiii dVupdStuudSutt 0)()()( ,      ………………………..(4.3) 

Now difference of eq.(4.1) and eq.(4.3) is obvious, i.e. only difference is sign of the second term. 
Therefore it can be concluded that monotonous convergency of approximate solutions for the state 
vector (u

i
,!

ij
)  can be expected in the new mixed method, while in case of the method based on 

Reissner’s Principle such convergency is not guaranteed. 
This conclusion is true irrespective of the stress-strain law if existence and positive definiteness of 

)( ijA !  or )( ijB ! are assured(See Fig. 2).  
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!p (ui ) = A("ij )dv #
v$ piuidv #

v$ tiuids
s%
$ If (uij ,% ij ) is the true solution

!c (% ij ) = B(% ij )dv #
v$ uitids

su
$ !t (ui ,% ij )&min (w.r.t.ui &% ij )

!t (ui ,% ij ) =!p (ui )+!c (% ij ) min!p (ui )

min!c (ui ,% ij )

min!c (% ij )

 

(a) linear elasticity problem 

 
   degree of approximation (w.r.t. u

i
&!

ij
)          degree of approximation (w.r.t. u

i
&!

ij
)  

 (b) nonlinear elasticity problem 

Fig 2. Convergency characteristic of approximation solutions to be obtained  

basing on the present mixed variational method 

In case of nonlinear problems, decoupling of the unified energy principle is not possible, and therefore 

bracketing of the true solution in-between the upper and lower bound solutions can not be made, but 

approximate solution will monotonously converge to the true solution from upper side or lower side of 

the true solution definitely so long as existence of )( ijA !  and )( ijB ! , together with their positive 

definiteness are assumed. It should be mentioned here that the total strain energy of system !
ij
"
ij

 
is drawn in case of the conservative stiffness estimation for structural design. 

5. There are 8 possible methods of solution in the mixed finite element formulation 
In the mixed finite element analysis 8 different methods of solution can be proposed considering 
combination of the following three conditions to be satisfied in each individual element:  

!
ij
+ p

i
= 0 in V , t

i
! t

i
= 0  on S

!
 and u

i
! u

i
on S

u
  (w.r.t. each element) .  

where (u
i
, t
i
)  must be understood as unknown state vector of the adjacent elements on the same 

element boundary surface. 
They are shown in Table 1.  Solution (1) (tentatively called as “Modified Reissner Method”) 
covers other 7 methods and Solution (5) is the well-known Trefftz’s method by which the lower 
bound solution can be always obtained. These solution procedure ① and ⑤ are new unique methods 
where continuity of the element state vectors along their boundary surfaces are not required a priori 

! ijeij = A(eij )+ B(! ij )

min !
t
(u

i
,"

ij
)  

min !
t
(u

i
,"

ij
)  
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and the other 6 methods are, then, called as “Generalized Finite Element Method.” 

Among them, DM( ) corresponds to the conventional finite element method. It is also interesting 
to mention that GM( ) is a semi-analytical method because all three element conditions are a priori 
satisfied. 

Table1: 8 Possible methods of solution derived from the present mixed variational formulation 
(for Rayleigh-Ritz’s method) 

SOL 
NO. 

Variational equations Constraint 
Conditions 

remarks 

1 
( ) ( )

( ) 0

,

=!""

!""!+#

$
$$

#

uS
iii

S
iii

V
iijij

dStuu

dSuttdVup
 

 
modified 

Reissner’s Method 

2 ( ) ( ) 0
,

=!""!+# $$
#S

iii
V

iijij dSuttdVup
 

uii
Suu on0=!  

Displacement 
Method (I) 

(DM I) 

3 ( ) ( ) 0
,

=!""!+# $$
uS

iii
V

iijij dStuudVup
 

!
=" Stt

ii
on0  

Equilibrium 
Method (I) 

(EM I) 

4 ( ) 0
,

=!+"#V iijij dVup
 

uii
Suu on0=!  

!
=" Stt

ii
on0  

Galerkin’s Method 
(I) 

5 ( ) ( ) 0=!"+!" ##
$ uS

iii
S

iii
dStuudSutt

 

  

! ij, j + p i = 0 in V  Trefftz’s Method 

6 ( ) 0=!"#
$S

iii
dSutt

 

  

! ij, j + p i = 0 in V  

uii
Suu on0=!  

DM(II) 

7 ( ) 0=!"#
uS

iii
dStuu

 

  

! ij, j + p i = 0 in V  

!
=" Stt

ii
on0  

EM(II) 

8 

 

  

! ij, j + p i = 0 in V  

!
=" Stt

ii
on0  

uii
Suu on0=!  

GM(II) 
Analytical  
Solution 
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Theoretically FEM using GM( ) elements is equivalent to the Boundary Element Method where 
the element characteristic matrix which consists of stiffness and flexibility matrices is analytical and 
therefore the matrix size of the overall system must be very small to compare with conventional 
finite element analysis and furthermore study of design parameters may be possible, although 
derivation of the element characteristic matrix might not be easy. 
In the mixed FEM analysis solutions ① and ⑤ can be recommended for practical use, because 
preliminary fulfillment of continuity of the element state vectors on their common boundaries can 
be avoided in these methods of solution, so that finite element analysis may be greatly simplified.                              

6. Role of the stress-strain law on the development of the present mixed method of solution 
The present mixed variational method cannot be useful unless the stress-strain law of a material 

used is specified either in the form of )( ijij f !" =  or )(
ijij

g !" = . 

So that the strain energy function )( ijA !  and its complementary strain energy function )( ijB !  

can be supplied at least in Maclaurin series form. 

Prof. I. Shibuya of Osaka University gave the following formula for strain energy function )( ijeA  

of the metal from the thermodynamics point of view: 

  A(eij ) = A0 +
1

2!
aijkleijekl +

1

3!
aijklmneijeklemn + ! ! !                 …………………(6.1) 

where eij =
1

2
(ui, j + uj ,i + uk ,i !uk ,i ) (i, j,k = 1,2,3)  

Since )( ij
ij

ij ef
e

A
=

!

!
="  and if Jacobian !("

11
,"

22
# ##) !(e

11
,e
22
# ##) $ 0  the inverse of 

)( ijij ef=!  i.e., )(
ijij

ge !=  can be assured. 

For practical use of this mixed variational formulation, however, derivation of )( ijeA  and )( ijB !  

in the polynomial form will play a vital role in its future development. 
Concerning this point, W. Prager assumed first the most general nonlinear elasticity law of the 
following type; 

  !e = c
1
!"
1
+ c

2
!"
2
+ c

3
!"
3
+ # # #      ………………………………………………(6.2) 

  where superscript implies deviatoric stress or strain tensors. 
And then by applying Cayley-Hamilton’s Theorem, he reduced it to the following equation: 

  !e = P !" +Q !"
2       ………………………………………………(6.3) 

(Ref. W. Prager; “On the Kinematics of Soils ”Memories des Sciences 28(1954), Ac.Roy.Belgique 
pp.3-8) 



8 

However, I recognize that this is only the first step of my work on applications of the mixed 
variational method to analysis of general nonlinear problems including metals, high polymers, 
rubbers, soil, rock, concrete, many other composites and bio-materials. 

7. Development of nodeless finite element method 
I think that epoch making progress of finite element method may be attributed to generalization of 
the joint concept in the frame analysis to continuum mechanics, but recently I recognize that this 
concept has been giving undesirable influence on the further development of nonlinear finite 
element analysis where the incremental method plays vital role of analysis. 
In the conventional finite element analysis, equality of two functions )()( xgxf =  )( bxa !!  is 
approximated by )()( ii xgxf =  ),,2,1( bxani

i
!!"""= . 

This concept is very practical and easy to apply. 
However, it presents difficult problems in the solid contact problem where contact area as well as 
pressure distribution on the surface are a priori unknown and they may change depending upon the 
progress of loading. 
Therefore I believe that the equation; f (xi ) = g(xi )  should be replaced by the following equality 
equations of polynomials of finite degree; 

f (xi ) = g(xi )! akx
k
= bkx

k
! ak = bk

k=1

u

"
k=1

u

"  

      )1,0( uk !!!=  
In this way, nodes can be completely eliminated in the finite element analysis. Application of the 
new mixed variational formulation is now under way to analysis of the solid contact problems. 

8. Force method, its rise and fall 
Force method was originally proposed in the frame analysis, but it has been declined because 
concept of the redundant forces is not justified in the frame analysis and in continuum mechanics. 
However it is generally clear that external forces are in equilibrium in the deformed solids. 
Therefore the Force Method can be evidently restored as the Equilibrium Method imposing no rigid 
body displacement condition to the structure under consideration in the present mixed variational 
method. The conclusion will be illustrated by a simple space frame analysis.  
Generally speaking, each one dimensional member(beam or column) has 12 degrees of freedom 

u,v,w,!,",#;V
x
,V

y
,P,M

x
,M

y
,M

z( )  i.e. 6 displacements components and their corresponding 

forces, and therefore it is not difficult to construct the element characteristic matrix which consists 
of the stiffness and flexibility matrices of the beam element. 
Collecting equilibrium and compatibility equation at all joints of a given frame in matrix form, the 
following total equation for state vectors of a given frame can be obtained in matrix form: 

  
K
11

K
12

K
21

K
22

!

"
#

$

%
&
d

f

!

"
#

$

%
& =

F
1

F
2

!

"
#

$

%
&         …………………………………(8.1) 
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where d  is nodal displacement, f  is the corresponding force vector. 

  
K
11
d + K

12
f = F

1

K
21
d + K

22
f = F

2

!
"
#

        …………………………………(8.2) 

Eq.(8.1) or eq.(8.2) are characteristic equations for state vectors of a given frame in the mixed form. 
It is easy to see that they consist of stiffness and flexibility equations of a given frame. 
Thus, the force method is restored by matrix condensation technique and it will be illustrated by 
analysis of a simple space frame. 

9. Castigliano’s Theorem can be derived from the Energy Conservation Law 
It is not too difficult to derive the well known Castigliano’s Theorem from the energy conservation 
law given by eq.(9.1). To do this, it is only necessary to take changes of external body force 
p
i
in V , surface tractions t

i
on S

!
and enforced displacements u

i
on S

u
.  

! ij"ijdv = piuidv +
v#v# tiuids +

s!
# uitids

su
#        ………………………..(9.1) 

(! ij + "! ij )(#ij + "#ij )dv = (pi + "pi )(ui + "ui )dv
v$v$

+ (ti + "ti )(ui + "ui )ds +
s!
$ (ui + "ui )(ti + "ti )ds

su
$

    …………..(9.2) 

where !  must be applied to external forces p
i
 body force in V, t

i
 surface tractions on 

S
!

 and u
i
 enforced displacements on S

u
. 

Considering resulting small change of the state vector (u
i
,!

ij
)  i.e., (!u

i
,!"

ij
) and neglecting the 

higher order terms the following equation can be derived: 

( ! ij"#ijdv $ pi"uidv $ ti"uids $
s!
%v%v% ti"uids)

su
%

+ ( #ij"! ijdv $ "piuidv $ "tiuids $
s!
%v%v% ui"tids) = 0

su
%

      …………..(9.3) 

The first equation of the L. H. S. of eq.(9.3) represents change of eq.(9.1) w.r.t. the enforced 
displacements u

i
on S

u
 and the second equation change of eq.(9.1) due to external force 

(p
i ,
t
i
)  and they are considered independent. Thus the following two equations of so called the 

first and second theorem of Castigliano can be derived: 
(i) First theorem of Castigliano 

!A "ij( )
v# dv $ pi

v# !uidv $ ti!uids $ ti!uids = 0
su
#s%

#           …………..(9.4) 

t
i
=
!"

p

!u
i

          …………..(9.5) 

where ! p (ui ) = A "ij( )
v# dv $ pi

v# uidv $ tiuids
s%
#         …………..(9.6) 

is the potential energy of a given system. 
(ii) Second theorem of Castigliano 
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!B " ij( )
v# dv $ !pi

v# uidv $ !tiuids $ !tiuids = 0
su
#s"

#         …………..(9.7) 

u
i
=
!"

c

!t
i

          …………..(9.8) 

where !
c
(u

i
)  is the complementary energy of a given system expressed by 

  !c (" ij ) = B " ij( )
v# dv $ ui

v# tids                           …………..(9.9) 

and   
A(!ij ) = " ijd!ij

c#
B(" ij ) = !ijd" ij

c#

$

%
&

'&
                                 …………..(9.10) 

It is interesting to note that another theorem can be also derived from eq.(9.7) by: 

   u
i
=
!"

c

!p
i

         …………..(9.11) 

10. A new mixed variational formulation of solid mechanics problems in terms of deviatoric stress 
and strain tensors 
In the theory of plasticity, it is common to use the following deviatoric stress and strain tensors: 

!
ij
= "! ij

+ p#
ij

$
ij
= "$ij + e# ij

%
&
'

('
   ………………………….. (10.1) 

where p =
1

3
! kk , e =

1

3
"kk  

where p  is the hydrostatic pressure and e  is the corresponding volumetric strain. 

And it is not difficult to derive the following equation on the strain energy expression: 

!
ij
"
ij
= #! ij #"ij + pe    ………………………….. (10.2) 

That is to say, the strain energy of a solid consists of two parts, i.e. one is due to volumetric 
change of a solid, while the other, strain energy due to the shape change. It is common practice in 
the flow theory of plasticity to assume incompressibility of a solid and then pe  is neglected. In 

the slow viscous flow problem, it is also common to neglect this term. 
However, incompressibility of a material under consideration is assumption by which the 
analysis may be simplified, but often it may give some trouble in analysis. 
Therefore, original variational principle given by eq.(10.1) is slightly modified using eq.(10.1) 
and eq.(10.2) as follows: 

! "# ij "$ijdv +
v% ! pedv & pi!uidv &

v%v% ti!uids
s#
%

& ui! "tids &
su
% un! pds

su
% = 0

………………………….. (10.3) 
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where u
n

 is the enforced surface displacement along the normal direction n  on 
the surface.  
t
i
= !

ij
n
j
= ( "! ij

+ p#
ij
)n

j
= "ti + p "ti = "! ij

n
j
 

Increase of 2 unknown variables p  and e  is compensated by reduction of any 2 unknowns 
!" ij

 and !"ij  from !" ij
= !#ij = 0 . Original formulation was first proposed by L. R. Herrmann* 

for analysis of the viscoelastic materials. 
* L. R. Herrmann and R. M. Toms, “A reformulation of the Elastic Field Equations, in terms of 
Displacements, valid for all admissible values of Poisson’s Ratio” Transaction of ASME, Journal 
of Applied Mechanics, vol. 86, Ser, E., pp. 140~141, 1964 

11. Application of the new mixed variational formulation to the finite deformation problem of elastic 
solids 

Changing the definition of strains from !
ij
=
1

2
(u

i, j
+ u

j ,i
)  to 

 

eij =
1

2
(ui, j + uj , i + uk , i iuk , j ) , this 

mixed variational method can be extended to analysis of the finite elastic deformation problems as 
follows; 

! ! ! ! ="""
v v S S

iiiiiiijij
u

dSfudSufdVupdVe
#

$$$#$ 0   ………………………….. (11.1) 

      )&,,,(
iji

utrw !  

  where )3,2,1,,)(( , =+= kiruuf ikkjkiji !"  if ; given surface tractions 

It must be mentioned here that independent variational formulation w. r. t. u
i
&!

ij
is no longer 

possible in case of the finite elastic deformation. It should be also mentioned here that the positive 

definiteness of the strain energy )( ijeA  can not  be always assumed although its existence is 

assumed. This suggests occurrence of instability problems of the solution. 

12. Mixed variational formulation on the flow theory of plasticity 
Firstly well known Prandtl-Reuss’ flow theory of plasticity must be outlined as follows:
True increment of the state vector ( du ,d! ij ) of a solid must satisfy the following set of equations:

   equilibrium equation : d! ij , j( ) = 0      …………………(12.1)

   compatibility equation :d!ij =
1

2
("dui / "x j )+ ("duj / "xi )#$ %&       …………(12.2)

   boundary conditions :
      geometrical B.C.  du

i
= du

i
on S

u
            ……………(12.3)

      stress B.C.  
dti = d! ijn j = dti on S

!

(i, j = 1.2.3)
                 …………(12.4)
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      where S = S
u
+ S

!

and du
i
 implies displacement increment.  

Prandtl and Reuss presented the following equations: d!ij
p
= "# ijd$    …….…..……(12.5)

where d!  is a scalar constant of proportionality and the plastic work done dWp  is given by

                    dWp = ! ijd"ij
p
= #! ij"ij

p              …………………(12.6)

and therefore, 
          dWp = !" ij !" ijd#        …………………(12.7)
Since dWp ! 0, d" ! 0 i.e., "  is a positive scalar and von Mises yield condition is adopted.
Therefore, denoting

      ! =
2

3
"! ij "! ij( )

1/2

, d#
p
=

2

3
d#ij

p
d#ij

p( )
1/2

      ………(12.8) 

Mises yield condition is given by 

        ! = 3 "J
2
, "J =

1

2
"! ij "! ij

       …………………(12.9) 

Consequently, the following equation can be derived. 

      ! = F !d" p

#( )        …………………(12.10) 

together, with 

      d!ij
p
=
3 "# ijd#

2#
2

"F
, "F =

1

#

d#

d!
p

d# $ 0( )      ………(12.11) 

writing eq. (12.10) as 

      ! = H d" p

#( )        …………………(12.12) 

the following equation is obtained: 

       !F = !H /"        …………………(12.13) 
And finally the following complete set of Prandtl-Reuss equation for strain-hardening materials 
are derived by: 

   

 

d!ij =
1" 2#( )
E

d$% ij +
d &$ ij

2G
+
3 &$ ijd$

2$ &H
d$ ' 0

d!ij =
1" 2#( )
E

d$% ij +
d &$ ij

2G
d$ ! 0

(

)
**

+
*
*

   …………………(12.14) 

The inverse equation of eq. (12.14) is given by  
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d! ij =
E

1" 2#
de$ ij + 2G d %&ij "

%! kld&kl
2

3
! 2 H

3G
+1

'
()

*
+,

%! ij

-

.

/
/
/
/

0

1

2
2
2
2

%! ijd&ij 3 0

d! ij =
E

1" 2#
de$ ij + 2Gd %& %! ijd&ij ! 0

4

5

6
6
6

7

6
6
6

 ………(12.15) 

 where    de =
1

3
d!

ii
 

Now the problem at hand is defined by K. Washizu as follows: 
Find the solution for incremental state vector ( du , d! ij ) of a given solid which satisfied: 

equilibrium equation :d! ij , j = 0 in V (a)

compatibility equation :d"ij =
1

2
#dui / #x j + #duj / #xi( ) (b)

boundary conditions :

displacement B.C. dui = dui on Su (c)

stress B.C. dti = d! ijn j = dti on S! (d)

$

%

&
&
&
&

'

&
&
&
&

    …………(12.16) 

Three variational principles can be proposed for the problem defined above. 
(i) the principle for incremental virtual work(the upper bound theorem) 

Denoting a set of the incremental displacement satisfying eq.(12.16.a) and the incremental strains 

by du*  and d!*  respectively, the true solution of du*  makes the following equation 
minimum:

dA
*
dv !

v

" dt
i
du

*
ds

s#
"

where 

   dA =
3E

2(1! 2")
(de)

2
+G d #$ijd #$ij !

( #% kld #$kl )
2

2

3
% 2
(

#H

3G
+1)

&

'

(
(
(

)

*

+
+
+

     …………………(12.17)

and dA*  is the value of dA  where d!ij  is replaced by d!ij
*  

(ii) the principal for the incremental complementary virtual work(the lower bound theorem) 

Denoting a set of the incremental stress satisfying eq.(12.16.a) and eq.(12.16.d) by d! ij

* , the 

true solution of d! ij

*  makes the following equation minimum: 

  dB
*
dv !

v

" dt
i

*
du

i
ds

su
"           min 

where 
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  dB =
3(1! 2")

2E
(d# )

2
+
d $# ijd $# ij

4G
             …………………(12.18) 

and dB*  is the value of dB  where d! ij  is replaced by d! ij

*  

(iii) the unified energy principle for the strain hardening materials obeying Prandtle-Reuss’s flow 
theory of plasticity

For the variation of the incremental state vector(du* , d! ij

* ) of the strain-hardening materials 

obeying Prandtle-Reuss’s flow rule, the true solution thereof will make the following equation 
minimum:

  (dA
*
+ dB

*
)dv !

v

" dt
i
du

*
ds

s#
" ! dt

i

*
du

i
ds

su
"    min         ……………(12.19) 

13. On the solution for in-plane bending of a cantilever plate due to a boundary shear given by S. P. 
Timoshenko 

S. P. Timoshenko gave a very interesting solution for in-plane bending of a cantilever plate in his 
celebrated textbook on the theory of elasticity as follows: 
The problem is defined by the following equation of equilibrium: 
!"

x

!x
+
!#

xy

!y
= 0

!#
yx

!x
+
!"

y

!y
= 0

$

%

&
&

'

&
&

     ……………(13.1) 

with associated boundary conditions: 

x = l ! x = "
P(l " x)y

I
# xy =

P

2I
(
h
2

4
" y2 )

y = ±
h

2
! y (x,±

h

2
) = 0 # xy (x,±

h

2
) = 0

x = 0 u(0, y) = v(0, y) = 0

$

%

&
&
&

'

&
&
&

                  

………………………………(13.2) 
  Replacing the clamped edge condition at x=0 by  

   u(0,0)=v(0,0)=0, !(0,0) = 0 when ! =
1

2
(
"u

"y
#
"v

"x
)     ………………(13.3) 

The following analytical solution is derived by him: 

  
u(x, y) = !

P(l ! x)2 y

2EI
!
"Py2

6EI
+
Py

3

6IG
+ (

Pl
2

2EI
!
Ph

2

8IG
)y

v(x, y) =
"P(l ! x)y2

2EI
+
P(l ! x)2

6EI
!
Pl

2
(l ! x)

2EI
+
Pl

3

3EI

#

$
%%

&
%
%

  ………………(13.4) 

Here the approximation solution of the same problem is considered to obtain by the energy method 

Fig.3 In-plane bending of a cantilever plate 

due to a boundary shear of a palaboric 

distribution given by 

! xy = "
P

2I
(
h
2

4
" y

2
)  when I =

bh
3

12
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using the following displacement functions: 

   
u(x, y) = amnx

m
y
n

n=0

!

"
m=1

!

"

v(x, y) = bmnx
m
y
n

n=0

!

"
m=1

!

"

#

$

%
%

&

%
%

     ………………(13.5) 

It must be mentioned here first that the displacement functions defined by eq.(13.5) exactly satisfies 
the clamped edge conditions given by 
   u(0, y) = v(0, y) = 0             ………………(13.6) 
Now the approximate solution for this problem is to be searched by minimizing the following 
potential energy formulation !p (amn ,bmn )with respect to unknowns (a

mn
,b

mn
)  

          

 
!p (amn ,bmn ) =

1

2

Eh

(1"# 2 )
$u
$x

+
$v
$y

%
&'

(
)*

2

+ 2(1"# 2 )
1

4

$u
$x

+
$v
$y

%
&'

(
)*

2

" (
$u
$x
)(
$v
$y
)

+
,
-

.-

/
0
-

1-

2

3
4
4

5

6
7
7"

h

2

h

280
l

8 dxdy

"
Ph

2I"
h

2

h

28 (c
2 " y2 )v(l, y)dy

 

     
!"p

!amn
= 0 ,

!"p

!bmn
= 0     ………………(13.8) 

Unfortunately, however, calculation of the strain energy of a given plate does not converge. 
The reason why was found that this is due to assumption of the clamped edge condition given by 
eq.(13.6) . 

Now this clamped edge condition is replaced by the following series form: 

    
 

u(o, y) = a
00
+ a

01
y + a

02
y
2
+!

v(o, y) = b
00
+ b

01
y + b

02
y
2
+!

!
"
#

$#
   ………………(13.9) 

Considering  a
00
= u(0,0) = 0, b

00
= v(0,0) = 0  and these conditions imply no translational 

displacements at the origin of the coordinates. Therefore the first approximation of the clamped 
edge at x=0 is given by further introduction of zero rotation !(x, y)  at the origin: 

   
!(x, y) =

1

2

"u
"y

#
"v
"x

$
%&

'
()

i.e. !(0,0) =
1

2
a
01
# b

01( ) = 0 *a
01
= b

01

   

Thus the present analysis is reduced to Timoshenko’s solution. His solution, however, is exact 
solution under the boundary condition of u(0,0) = v(0,0) = !(0,0) = 0 , but only the first 
approximate solution for u(0, y) = v(0, y) = 0 !!  
All of sudden, I recognized that the computer warned me modeling of the clamped end condition 
specified by u(0, y) = v(0, y) = 0  is impossible.  
Therefore it can be concluded that this problem is not adequate to use for bench mark test of the 
finite elements for 2D stress analysis because it is only the first approximate solution of asymptotic 

………………(13.7) 
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convergency. Similar consideration must be made for analysis of structures like skewed bridges, 
sweptback wing of aircrafts and idealization of the fixed end condition in experimental study. Finite 
Element analysis was conducted first using the following element displacement function 
(NDOF=16). 

u(x, y) = uc ! "0y + # x0x +
1

2
$ xyy + a1x

2
+ a2xy + a3y

2
+ a4x

2
y + a5xy

2

v(x, y) = vc ! "0x + # y0y +
1

2
$ xyx + b1x

2
+ b2xy + b3y

2
+ b4x

2
y + b5xy

2

%

&
''

(
'
'

  …………(13.10) 

At the same time using Trefftz’s method and Goursat’s stress function approach, the same problem 
was analyzed. The results obtained are shown in Fig 4. 
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Figure 4: Inplane bending analysis of a cantilever plate subjected to a boundary shear 

of parabolic distribution (divided by square mesh 

Mesh Div. 
!  NDOF 

stress 
function  

used 

displaceme
nt 

function 
used 

4 ! 2 ! 16 11.7195 9.4399 

8 ! 4 ! 16 11.4996 10.5163 

12 ! 6 ! 16 11.4347 10.9196 

16 ! 8 ! 16 11.4063 11.0912 

20 ! 10 ! 16 11.3909 11.1780 

Mesh Div. 
!  NDOF 

stress 
function 

used 

displaceme
nt  

function  
used 

4 ! 2 ! 16 61.4766 51.0777 
8 ! 4 ! 16 60.0641 56.1607 

12 ! 6 ! 16 60.0287 58.1254 
16 ! 8 ! 16 60.0138 58.8946 

20 ! 10 ! 16 60.0071 59.2698 

A
v : vertical displacement at the point A 

4th order Goursat’s stress function used 

2nd order displacement function used 

Timoshenko 

4th order Goursat’s stress function used 

2nd order displacement function used 

Timoshenko 

( )
Bx

! : stress at the point B A 

B 
 

  
  P 

A 

B 
 

  
  P 
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A solution obtained using Modified Reissner method with the element displacement function 

defined by eq. (13.11) is shown by curve −− , while the other using the equilibrium 
displacement functions is shown by the curve −− in this figure. Fig 4 also shows the 
convergency characteristics of the calculated displacement v

A
 and stress !

A
 respectively.  

It can be seen that the curve −− gives always the upper bound solution for both v
A

 
and !

A
, while the other curve −− gives the lower bound solution. 

14. Concluding remark: 
So far I have discussed a new mixed variational method developed which can be applied to the 
material and geometrical nonlinear problems of solids separately. Development of the method is 
underway for their coupled problems using standard incremental procedure. Application of the 
present method to the problems of solid contact, microplar materials etc. area also being 
considered, 

Finally it may be the last problem for not only researchers but also practisionors to challenge the 
mixed variational formulation of multiphysics problems by finding another variational principle 
for enthropy conservation law governing the general transport phenomena. 

As the concluding remark, I should be mentioned that already 130 years ago Josiah 
Willard Gibbs, the founder of the statistical thermodynamics, predicted that both 
minimum principles of strain energy and complementary energy would be assured if 

existence and positive definiteness of A(!ij )  and B(!
ij
)  can be assumed.  

Therefore I believe that he might have foreseen existence of the unified energy principle I 
discussed in this paper. 

 


